Monoclonal Antibodies to 25OH Vitamin D
Contents

Monoclonal Antibodies to 25OH Vitamin D

1. Introduction ... 3

2. Product Data Sheet .. 5

3. Product Performances .. 6

4. Product Analysis .. 9

5. Vitamin D Starter Kit .. 11

6. References ... 12
1. INTRODUCTION

VITAMIN D

Since many years the role of vitamin D in bone and mineral metabolism was recognized in bone-related diseases. Clinical applications of 25OH Vitamin D measurements were merely related to the diagnosis and monitoring of therapy for rickets (children), osteomalacia, postmenopausal osteoporosis, and renal osteodystrophy. As a result of more recent studies a link between Vitamin D deficiency and many other diseases is suggested. These include cancer, cardiovascular disease, autoimmune diseases, diabetes, depression and many others.

There are two forms of Vitamin D in the human body namely Vitamin D3 (cholecalciferol) and Vitamin D2 (ergocalciferol), which are structurally very similar. Vitamin D3, the main form in humans, is produced in the skin from 7-dehydrocholesterol in response to direct sunlight and can also be obtained in small amounts from animal based foods (oily fish, primarily salmon and mackerel). Vitamin D2 can be obtained in small amounts from plant-based foods (some vegetables, yeast and fungi). Vitamin D3 and D2 are metabolized in the liver to their respective 25OH Vitamin D3 and D2 forms which are converted in the kidneys and in many tissues to the active forms (1,25(OH)₂ Vitamin D3 and D2).

DETERMINING VITAMIN D STATUS

The measurement of 25OH Vitamin D concentration in the serum or plasma is so far the best indicator of Vitamin D nutritional status. It is generally accepted that serum 25OH Vitamin D levels reflect the body’s storage levels of Vitamin D and correlate with the clinical symptoms of Vitamin D deficiency. There is no consensus about the optimal 25OH Vitamin D level, but many publications suggest a range ≥30 ng/mL (>80nmol/L) as optimal. The most widely used intervals are indicated in table 1.

<table>
<thead>
<tr>
<th>Vitamin D Status</th>
<th>25-Hydroxyvitamin D Total (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deficiency</td>
<td>< 10</td>
</tr>
<tr>
<td>Insufficiency</td>
<td>10 - 30</td>
</tr>
<tr>
<td>Sufficiency</td>
<td>30</td>
</tr>
<tr>
<td>Toxicity</td>
<td>>100</td>
</tr>
</tbody>
</table>

Paediatric reference intervals have not been established, but the American Association for Paediatrics (AAP) recommends a value of 20 ng/mL for healthy children. Several population studies have identified widespread 25OH Vitamin D insufficiency (> 40% of the population) in apparent healthy populations.

Author:
Nicolas Heureux, PhD
Principal Scientist – Vitamin D, DIAsource Immunoassays
DIAsource ImmunoAssays S.A.
Rue du Bosquet, 2 | B-1348 Louvain-La-Neuve | Tel : +32.10.84.99.11 | Fax : +32.10.84.99.90
www.diasource.be
About 70 percent of the United States population has inadequate levels of vitamin D. Groups that are at higher risk for inadequate levels of 25OH Vitamin D levels include individuals with limited sun exposure, the elderly, dark-skinned individuals and breast-feeding infants.

MEASUREMENT OF 25OH VITAMIN D

The two main types of methods are competitive immunoassay and those based on chromatographic separation followed by non-immunological direct detection (HPLC, LC–MS/MS). Lack of a reference standard for 25OH Vitamin D has, until recently, been a major issue resulting in poor between-method comparability. For immunoassays, specificity can be an issue especially in relation to the proportion of 25OH Vitamin D2 that is quantified whereas HPLC and LC–MS/MS methods are able to measure the two major vitamin D metabolites 25OH Vitamin D2 and 25OH Vitamin D3 independently. HPLC and LC–MS/MS require more expensive equipment and expert staff. In general precision of immunoassay, HPLC and LC–MS/MS are comparable and all have the required sensitivity to identify severe Vitamin D deficiency.

ANTIBODIES TO 25OH VITAMIN D

Polyclonal antibodies, from sheep or rabbit, have been widely used from the 90s, in RIA (RadioImmunoAssay), ELISA (Enzyme-Linked ImmunoSorbent Assay) and CLIA (ChemiLuminescence ImmunoAssay).

While polyclonal antibodies are simple and inexpensive to produce, they usually lack specificity and suffer from batch to batch variability. Monoclonal antibody production require high skills and is more expensive. However, a careful selection process ensures a superior specificity profile. Moreover, state of the art production techniques ensure a constant and renewable source of antibodies and all batches are identical.

In 2009, DIAsource Immunoassays patented Mouse Monoclonal Antibodies, based on a proprietary Vitamin D hapten, recognizing both 25OH Vitamin D3 and 25OH Vitamin D2. The patent was granted in Europe in 2013 and is still pending in the US. The patent covers any monoclonal antibody recognizing both 25OH Vitamin D3 and 25OH Vitamin D2.

These monoclonal antibodies have been successfully used in commercial RIA (RadioImmunoAssay), ELISA (Enzyme-Linked ImmunoSorbent Assay) and POCT (Point Of Care Test), by DIAsource Immunoassays and other companies.
2. PRODUCT DATA SHEET

PRODUCT NAME
Monoclonal antibody anti 25OH Vitamin D Total

SPECIES
Mouse

CLONES
LMBP7012CB, Cat# 5319716
LMBP7013CB, Cat# 5319706

PRODUCT DESCRIPTION
Mouse monoclonal antibodies recognizing both 25OH Vitamin D3 and 25OH Vitamin D2

<table>
<thead>
<tr>
<th>LMBP7012CB, Cat# 5319716</th>
<th>LMBP7013CB, Cat# 5319706</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORMAT</td>
<td>Purified, Liquid (PBS 0.1M, pH 7.4)</td>
</tr>
<tr>
<td>CONCENTRATION</td>
<td>>1mg/mL</td>
</tr>
<tr>
<td>PRESERVATIVE</td>
<td>NaN₃ (0.05%)</td>
</tr>
<tr>
<td>PURIFICATION</td>
<td>Protein A affinity chromatography</td>
</tr>
<tr>
<td>ISOTYPE</td>
<td>IgG1 kappa</td>
</tr>
<tr>
<td>ISOELECTRIC POINT</td>
<td>7.35</td>
</tr>
<tr>
<td>IMMUNOGEN</td>
<td>Vitamin D derivative – BSA</td>
</tr>
<tr>
<td>MOUSE / FUSION PARTNERS</td>
<td>Balb/c (Charles River)/ NSO</td>
</tr>
<tr>
<td>SPECIFICITY</td>
<td>Recognizes native 25OH Vit D2 and Vit D3</td>
</tr>
<tr>
<td>STORAGE & SHELF LIFE</td>
<td>2 - 8°C / 10 years</td>
</tr>
</tbody>
</table>

Author:
Nicolas Heureux, PhD
Principal Scientist – Vitamin D, DIAsource Immunoassays
DIAsource ImmunoAssays S.A.
Rue du Bosquet, 2 | B-1348 Louvain-La-Neuve | Tel : +32.10.84.99.11 | Fax : +32.10.84.99.90
www.diasource.be
3. PRODUCT PERFORMANCES

LMBP7012CB, Cat# 5319716

TYPICAL STANDARD CURVE

<table>
<thead>
<tr>
<th>ELISA</th>
<th>OD</th>
</tr>
</thead>
<tbody>
<tr>
<td>25OH Vitamin D</td>
<td></td>
</tr>
<tr>
<td>0 ng/mL</td>
<td>2.66</td>
</tr>
<tr>
<td>5 ng/mL</td>
<td>2.39</td>
</tr>
<tr>
<td>15 ng/mL</td>
<td>1.83</td>
</tr>
<tr>
<td>25 ng/mL</td>
<td>1.46</td>
</tr>
<tr>
<td>55 ng/mL</td>
<td>0.81</td>
</tr>
<tr>
<td>130 ng/mL</td>
<td>0.21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RIA (RadioImmunoAssay)</th>
<th>cpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>25OH Vitamin D</td>
<td></td>
</tr>
<tr>
<td>0 ng/mL</td>
<td>17721</td>
</tr>
<tr>
<td>10 ng/mL</td>
<td>11022</td>
</tr>
<tr>
<td>20 ng/mL</td>
<td>6826</td>
</tr>
<tr>
<td>40 ng/mL</td>
<td>3446</td>
</tr>
<tr>
<td>60 ng/mL</td>
<td>1469</td>
</tr>
<tr>
<td>100 ng/mL</td>
<td>592</td>
</tr>
</tbody>
</table>

LOD

- ELISA: 1.5 ng/mL
- RIA (RadioImmunoAssay): 2.8 ng/mL

LINEARITY

- Recovery on spiking: 92 – 110 % 25OH Vitamin D3
- 95 – 113 % 25OH Vitamin D2

- Recovery on dilution: 92 – 105 %

SPECIFICITY

<table>
<thead>
<tr>
<th>Compound</th>
<th>% Cross-reactivity ELISA</th>
<th>% Cross-reactivity RIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>25OH Vit D₃</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>25OH Vit D₂</td>
<td>83%</td>
<td>86%</td>
</tr>
<tr>
<td>1,25(OH)₂ Vit D₃ₐ</td>
<td>20%</td>
<td>2.6%</td>
</tr>
<tr>
<td>1,25(OH)₂ Vit D₂ₐ</td>
<td>1.9%</td>
<td>2.1%</td>
</tr>
<tr>
<td>Vit D₃ₐ</td>
<td>2.9%</td>
<td>0.8%</td>
</tr>
</tbody>
</table>

Author:
Nicolas Heureux, PhD
Principal Scientist – Vitamin D, DIAsource Immunoassays
DIAsource ImmunoAssays S.A.
Rue du Bosquet, 2 | B-1348 Louvain-La-Neuve | Tel : +32.10.84.99.11 | Fax : +32.10.84.99.90
www.diasource.be
<table>
<thead>
<tr>
<th>Vitamin D Metabolite</th>
<th>Circulating Concentration</th>
<th>Analytical Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vit D₂ᵇ</td>
<td>1.3%</td>
<td>0.1%</td>
</tr>
<tr>
<td>24,25(OH)₂ Vit D₃ᶜ</td>
<td>≥100%</td>
<td>≥100%</td>
</tr>
<tr>
<td>25,26(OH)₂ Vit D₃</td>
<td>≥100%</td>
<td>≥100%</td>
</tr>
<tr>
<td>3-epi-25OH Vit D₃</td>
<td>0.1%</td>
<td>0.4%</td>
</tr>
</tbody>
</table>

ᵃCirculating concentrations are about 1‰ of 25OH Vitamin D concentrations.
ᵇCirculating concentrations are <5ng/mL.
ᶜThe numbers provided have been obtained with spiked samples. Native samples containing various concentrations of 24,25(OH)₂ Vit D₃, as verified by LC-MS/MS, have not been biased in an ELISA assay.
LMBP7013CB, Cat# 5319706

TYPICAL STANDARD CURVE

<table>
<thead>
<tr>
<th>RIA (RadioImmunoAssay)</th>
<th>cpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>25OH Vitamin D</td>
<td></td>
</tr>
<tr>
<td>0 ng/mL</td>
<td>21958</td>
</tr>
<tr>
<td>2 ng/mL</td>
<td>17916</td>
</tr>
<tr>
<td>6 ng/mL</td>
<td>14170</td>
</tr>
<tr>
<td>15 ng/mL</td>
<td>10710</td>
</tr>
<tr>
<td>55 ng/mL</td>
<td>4949</td>
</tr>
<tr>
<td>120 ng/mL</td>
<td>3161</td>
</tr>
</tbody>
</table>

LOD

0.4 ng/mL

RIA (RadioImmunoAssay)

LINEARITY

Recovery on spiking

91 – 105 % 25OH Vitamin D3

96 – 101 % 25OH Vitamin D2

Recovery on dilution

100 – 123 %

SPECIFICITY

<table>
<thead>
<tr>
<th>Compound</th>
<th>% Cross-reactivity ELISA</th>
<th>% Cross-reactivity RIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>25OH Vit D₃</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>25OH Vit D₂</td>
<td>83%</td>
<td>95%</td>
</tr>
<tr>
<td>1,25(OH)₂ Vit D₃</td>
<td>20%</td>
<td>4%</td>
</tr>
<tr>
<td>1,25(OH)₂ Vit D₂</td>
<td>1.9%</td>
<td>4%</td>
</tr>
<tr>
<td>Vit D₃</td>
<td>2.9%</td>
<td><0.3%</td>
</tr>
<tr>
<td>Vit D₂</td>
<td>1.3%</td>
<td><0.3%</td>
</tr>
<tr>
<td>24,25(OH)₂ Vit D₃</td>
<td>≥100%</td>
<td>≥100%</td>
</tr>
</tbody>
</table>

Circulating concentrations are about 1‰ of 25OH Vitamin D concentrations.
4. PRODUCT ANALYSIS

LMBP7012CB, Cat# 5319716

ANTIBODY CONCENTRATION UV 280nm (1mg/mL = 1.45 OD)

FUNCTIONAL TEST RIA & ELISA

SIZE EXCLUSION CHROMATOGRAPHY
Pre-column TSKgel SWXL Guardcolumn 6.0 mm x 4 cm
Column TSKgel G3000SWXL 7.8 mm x 30 cm
Eluent PBS 0.1M, 0.1M Na₂SO₄, 0.05% NaN₃, pH 6.7
Flow 0.9 mL/min
Concentration 2 mg/mL
Volume 10 µL
Wavelength 280 nm

Last batch produced B14A4P1

Overlap of 3 consecutive batches produced (B9F1P1, B9I2P1, B12C3P1)
LMBP7013CB, Cat# 5319706

ANTIBODY CONCENTRATION
UV 280nm (1mg/mL = 1.45 OD)

FUNCTIONAL TEST
RIA

SIZE EXCLUSION CHROMATOGRAPHY

- **Pre-column**: TSKgel SWXL Guardcolumn 6.0 mm x 4 cm
- **Column**: TSKgel G3000SWXL 7.8 mmm x 30 cm
- **Eluent**: PBS 0.1M, 0.1M Na₂SO₄, 0.05% NaN₃, pH 6.7
- **Flow**: 0.9 mL/min
- **Concentration**: 2 mg/mL
- **Volume**: 10 µL
- **Wavelength**: 280 nm

Last batch produced: B10B4

Author:
Nicolas Heureux, PhD

Principal Scientist – Vitamin D, DIAsource Immunoassays
DIAsource ImmunoAssays S.A.
Rue du Bosquet, 2 | B-1348 Louvain-La-Neuve | Tel : +32.10.84.99.11 | Fax : +32.10.84.99.90
www.diasource.be
Overlap of 2 consecutive batches produced (B9F1P1P2, B10B4)

5. VITAMIN D STARTER KIT

Over the years DIAsource ImmunoAssay has built extensive experience in Vitamin D immunoassay development and Vitamin D chemistry. DIAsource ImmunoAssays offers all components to develop your own Vitamin D assay.

ANTIBODIES

Based on a proprietary Vitamin D hapten, we have developed a line of mouse monoclonal antibodies directed towards 25-hydroxyvitamin D2 and D3. These monoclonal antibodies have been successfully used in commercial RIA (RadioImmunoAssay), ELISA (Enzyme-Linked ImmunoSorbent Assay) and POCT (Point Of Care Test), by DIAsource Immunoassays and other companies.

ANTIGENS

We have developed a specific collection of Vitamin D derivatives that go along with our monoclonal antibodies. Depending on your specific application, you may want to use our carboxylic acid, amine, biotin or BSA derivatives. These Vitamin D derivatives are produced by our highly skilled synthetic chemists in state of the art organic chemistry facilities. Furthermore, we offer services tailored to your specific requirements.

DISPLACEMENT SOLUTION

Displacing 25-hydroxyvitamin D from its binding proteins (VDBP) is always a big challenge in Vitamin assay development. DIAsource offers a unique displacement solution that features the All-in-One (AIO) technology.
6. REFERENCES

 Blood biomarkers of Vitamin D status.

 Resurrection of Vitamin D deficiency and rickets.

 Vitamin D: how much do we need, and how much is too much.

 Prevalence of Vitamin D insufficiency in an adult normal population.

- BISCHOFF-FERRARI H.A., GIOVANNUCCI E., WILLET W.C., DIETRICH T., DAWSON
 HUGHES B. (2006)
 Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health
 outcomes.

 Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers
 and cardiovascular disease.

 Defining deficiency of vitamin D.

- HOLICK M.F. (2007)
 Vitamin D deficiency.

 The problem of an optimal target level for 25-Hydroxyvitamin D, the test for vitamin D
 nutritional status.

- HOLICK M.F. (2009)
 Vitamin D Status: Measurement, Interpretation, and Clinical Application.
• National Osteoporosis Foundation. Prevention – Vitamin D
http://www.nof.org/aboutosteoporosis/prevention/vitamind

• WALLACE A.M. (2010)
Measurement of 25-hydroxyvitamin D in the clinical laboratory: Current procedures, performance characteristics and limitations.

• CAVALIER E. (2011)
Cross-reactivity of 25-hydroxy vitamin D2 from different commercial immunoassays for 25-hydroxy vitamin D: an evaluation without spiked samples.

• JANSSEN M.J.W. (2012)
Multicenter comparison study of current methods to measure 25-hydroxyvitamin D in serum.
Steroids, 77:1366-72.

• HEIJBOER A.C. (2012)
Accuracy of 6 Routine 25-Hydroxyvitamin D Assays: Influence of Vitamin D Binding Protein Concentration.

• HOLICK M.F. (2011)

• CARTER, G.D. (2012)

• HEWAVITHARANA, A.K. (2013)
Recent trends in the determination of vitamin D.

• ANCIAUX M., MATHIEU F., LIN F., PONCELET M.
PROCESS FOR THE PRODUCTION OF A HYBRIDOMA AND ANTIBODY OBTAINED THEREFROM, ABLE TO RECOGNIZE MORE THAN ONE VITAMIN D METABOLITE.
WO2011051348, EP2316854, US2011097733