DIAstik 11

RAPD0964
Reagent Sticks for the rapid determination of Urobilinogen, Glucose, Bilirubin, Ketones (Acetoacetic Acid), Specific Gravity, Blood, pH, Protein, Nitrite, Leukocytes and Ascorbic Acid in urine.

DIAsistik 11

IN VITRO DIAGNOSTIC

DIAsource ImmunoAssays SA - Rue du Bosquet 2, B-1348 Louvain-la-Neuve, Belgium - Tel: +32 10 84 99 11 - Fax : +32 10 84 99 90

STORAGE AND HANDLING
Store in a cool, dry place at temperatures between 2°C – 30°C. Do not store the sticks in a refrigerator or freezer. Store away from moisture and light. When stored in the original container, the product is stable up to the expiry date printed on the bottom of the container.

SPECIMEN COLLECTION AND PREPARATION
Collect urine in a clean, dry container that allows complete immersion of all the fields on the test stick. Do not add preservatives. Test the specimen as soon as possible, with the sample well mixed but not centrifuged. The use of fresh morning urine is recommended for optimal nitrite tests, as well as for the valid determination of bilirubin and urobilinogen, since these compounds are unstable when exposed to light. If immediate testing is not possible, the sample should be stored in the refrigerator, but not frozen, and then brought to room temperature before used in the test. Unpreserved urine at room temperature may undergo pH changes due to microbial proliferation, which may interfere with protein determination. If clearly voided specimens are not collected from females, positive results for leukocytes may be found due to contamination from outside the urinary tract. Skin cleansers containing chlorhexidine may affect protein test results.

VISUAL TEST PROCEDURE
The procedure must be followed exactly to achieve reliable results.
1) Dip the stick into the urine up to the test area for no more than two seconds.
2) Draw the edge of the stick along the brim of the vessel to remove excess urine; at this time, don't make the test areas touched to the brim of the vessel.
3) Turn the stick on its side and tap once on a piece of absorbent material to remove any remaining urine; Excessive urine on the stick may cause the interaction of chemicals between adjacent reagent pads, so that an incorrect result may occur.
4) After the proper time compare the test results carefully with the color chart on the vial label under good light. While comparing, keep the stick horizontally to prevent possible mixing of chemicals when excessive urine is present.

MATERIALS PROVIDED
- **STICK**
 - 100 Test devices
- Package insert

WARNINGS AND PRECAUTIONS
For in vitro diagnostic use only.
For professional use only.

CLINICAL PRINCIPLES OF PROCEDURE AND INGREDIENTS

Urobilinogen: The test is based on the Ehrlich’s reaction. Color changes from light orange-pink to dark pink.
Ingredients: 4-Methoxybenzenediazonium 2.9mg

Glucose: Glucose oxidase catalyzes the oxidation of glucose to form hydrogen peroxide. The hydrogen peroxide thus formed then oxidizes a chromogen on the reaction pad by the action of peroxidase.
Ingredients: Glucose oxidase 430U, Peroxidase 200U, o-Tolidine 12mg.

Bilirubin: Azo-coupling reaction of bilirubin with a diazonium salt in an acid medium to form an azo dye. Color changes from light tan to beige or light pink.
Ingredients: Sodium nitrite 0.733mg, 2,4-dichlorobenzene diazonium 2.3mg, Sulfosalicylic acid 25mg

Ketones: Legal’s test-nitroprusside reaction. Acetoacetic acid in an alkaline medium reacts with nitroferricanide to produce a color change from beige to purple.
Ingredients: Sodium nitroprusside 23.0mg

Specific Gravity (SG): Ionic solutes present in the urine cause protons to be released from a polyelectrolyte. As the protons are released the pH decreases and produces a color change of bromothymol blue from blue-green to yellow-green.
Ingredients: Bromothymol blue 0.5mg

Protein: Protein “error of indicators.” When pH is held constant by a buffer, indicator dyes release H+ ions because of the protein present and change color from yellow to blue-green.
Ingredients: Tetrabromophenol blue 0.34mg

Nitrite: The test is based on the diazotization reaction of nitrite with an aromatic amine to produce a diazonium salt. It is followed by an azo-coupling reaction of this diazonium salt with an aromatic compound on the reaction pad. The azo dye produced causes a color change from beige to violet.
Ingredients: Indole amino acid ester 1.3mg

Ascorbic acid: The test field involves the decolorization of Tillmann’s reagent. The presence of ascorbic acid causes the color of the test field to change from gray-blue to yellow.
Ingredients: 2,6-dichlorophenol sodium salt 0.8mg

Leukocyte: This test pad contains an indoxyl ester and diazonium salt. It is followed by an azo-coupling reaction of the aromatic amine formed by leukocyes

SUMMARY AND EXPLANATION
DIAsistik 11 Reagent Sticks are dip-and-read test sticks for In Vitro Diagnostic Use only for testing above items in urine. Test result may provide information regarding the status of carbohydrate metabolism, kidney and liver function, acid-base balance, and urinary tract infection. It is measured by comparison of test paper attached to a plastic stick with the color chart blocks printed on the vial label. The sticks may be read visually. They can also be read instrumentally, using urine chemistry analyzers.

Esterase with a diazonium salt on the reaction pad. The azo dye produced causes a color change from beige to violet.

CLINICAL PRINCIPLES OF PROCEDURE AND INGREDIENTS

Urobilinogen: The test is based on the Ehrlich’s reaction. Color changes from light orange-pink to dark pink.
Ingredients: 4-Methoxybenzenediazonium 2.9mg

Glucose: Glucose oxidase catalyzes the oxidation of glucose to form hydrogen peroxide. The hydrogen peroxide thus formed then oxidizes a chromogen on the reaction pad by the action of peroxidase.
Ingredients: Glucose oxidase 430U, Peroxidase 200U, o-Tolidine 12mg.

Bilirubin: Azo-coupling reaction of bilirubin with a diazonium salt in an acid medium to form an azo dye. Color changes from light tan to beige or light pink.
Ingredients: Sodium nitrite 0.733mg, 2,4-dichlorobenzene diazonium 2.3mg, Sulfosalicylic acid 25mg

Ketones: Legal’s test-nitroprusside reaction. Acetoacetic acid in an alkaline medium reacts with nitroferricanide to produce a color change from beige to purple.
Ingredients: Sodium nitroprusside 23.0mg

Specific Gravity (SG): Ionic solutes present in the urine cause protons to be released from a polyelectrolyte. As the protons are released the pH decreases and produces a color change of bromothymol blue from blue-green to yellow-green.
Ingredients: Bromothymol blue 0.5mg

Protein: Protein “error of indicators.” When pH is held constant by a buffer, indicator dyes release H+ ions because of the protein present and change color from yellow to blue-green.
Ingredients: Tetrabromophenol blue 0.34mg

Nitrite: The test is based on the diazotization reaction of nitrite with an aromatic amine to produce a diazonium salt. It is followed by an azo-coupling reaction of this diazonium salt with an aromatic compound on the reaction pad. The azo dye produced causes a color change from beige to violet.
Ingredients: Indole amino acid ester 1.3mg

Ascorbic acid: The test field involves the decolorization of Tillmann’s reagent. The presence of ascorbic acid causes the color of the test field to change from gray-blue to yellow.
Ingredients: 2,6-dichlorophenol sodium salt 0.8mg

Leukocyte: This test pad contains an indoxyl ester and diazonium salt. It is followed by an azo-coupling reaction of the aromatic amine formed by leukocyes
QUALITY CONTROL
For best results, performance of reagent sticks should be confirmed by testing known negative and positive specimen or controls whenever a new bottle is first opened. Each laboratory should establish its own goals for acceptable standards of performance. Each lab worker should ensure that it complies with government and local requirements.

LIMITATIONS OF PROCEDURE
As with all laboratory tests, definitive diagnostic or therapeutic decisions should not be based on any single result of method. Substances that cause abnormal urine color may affect the readability of test pads in urinalysis reagent sticks. Urinary ascorbic acid concentrations higher than 50mg/dl may cause interference in specimens with low concentrations of glucose, blood and bilirubin.

Urobilinogen: The absence of urobilinogen in the specimen cannot be determined. The test area will react with interfering substances known to react with Ehrlich’s reagent, such as p-amino-salicylic acid. Drugs containing azo group may give a masking golden color. The test is not reliable method for the detection of porphobilinogen.

Glucose: High SG (>1.020) with high pH urine and ascorbic acid (more than 40mg/dl) may cause false negative result at the low level of glucose.

Bilirubin: Metabolites of drugs, such as pyridium and selenium, which give a color at low pH, may cause false positives. Indican (indoxyl sulfate) can produce a yellow-orange to red color response, which may interfere with the interpretation of negative or positive bilirubin readings. Ascorbic acid (>25mg/dl) may cause false negative result.

Ketones: Positive results (trace or less) may occur with highly pigmented urine specimens or those containing large amounts of levodopa metabolites. Some high SG and low pH urine may give false positive result. Phenylsulphonphthalein may cause false positive result.

pH: If the excessive urine is remain on the stick because of improper test procedure, it is possible that the acidic buffer in protein portion comes out and affect the pH portion, then pH result may be decreased than the actual. This phenomenon is called “run-over effect.”

Blood: Elevated specific gravity or protein in urine may reduce the reactivity of the blood test portion. Microbial peroxidase associated with urinary tract infection may cause false positive results. Ascorbic acid concentrations (>40 mg/dl) may cause false positives at the low level of blood.

Specific Gravity (SG): High-buffered alkaline urine may cause diminished result, whereas high-buffered acidic urine may cause slightly elevated result.

Protein: False positive results may be found in strongly basic urine (pH 9). The interpretation of results is also difficult in turbid urine specimens.

Urine: Ascorbic acid (>25mg/dl) may cause false negative result with low level of nitrite containing (<0.03mg) urine. The negative result does not always mean that the patient is free from bacteriuria. Pink spots or pink edges should not be interpreted as a positive result. Negative result may occur when urinary tract infections are caused by organism which do not contain nitrate reductase; when urine has not been retained in the bladder long enough (four hours or more) for reduction of nitrate to nitrite occur; or when dietary nitrate is absent.

Leukocytes: The test result may not always be consistent with the leukocyte cell number by the microscopic examination. High concentration of glucose, high specific gravity, high level of albumin, high concentration of formaldehyde or presence of blood may cause decreased test results. High concentration of oxalic acid of trace of oxidizing agents may cause false negative results.

Ascorbic acid: No interferences are known.

EXPECTED VALUES
Urobilinogen: The normal urobilinogen range is 0.1 to 1.0 Ehrlich unit /dl. If results exceed the concentration of 2.0 mg/dl, the patient and the urine specimen should be evaluated further.

Glucose: A small amounts of glucose(up to 30mg/dl) are normally excreted by the kidney.

Bilirubin: Normally no bilirubin is detectable in urine by even the most sensitive methods. Even trace amounts of bilirubin are sufficiently abnormal to require further investigation.

Ketones: Ketone bodies should not be detected in normal urine specimens with this reagent.

pH: Urine values generally range from pH 5 to 9.

Blood: Normally, no hemoglobin is detectable in urine (0.01mg/dl; 3 RBC/µl). When hemoglobin appears in urine it indicates kidney disease or a urinary tract disorder. Blood may often be found in the urine of menstruating females.

Specific Gravity (SG): The normal SG of urine ranges from 1.001 to 1.035.

Protein: Normal urine specimens ordinarily contain some protein (<20mg/dl) but proteinuria and thus further clinical testing is needed to evaluate the significant of results.

Nitrile: Normally no nitrite is detectable in urine.

Leukocyte: Normally no leukocytes are detectable in urine.

Ascorbic acid: The average daily intake ranges from 30-60mg, with an output of 20-30mg/day.

PERFORMANCE CHARACTERISTICS
Performance characteristics are based on clinical and analytical studies and depend upon several factors: the variability of colour perception; the presence or absence of inhibitory and matrix factors typically found in urine; and the laboratory conditions in which the product is used(e.g., lighting, temperature, and humidity). Each colour block represents a range of values. Because of specimen and reading variability, specimens with analyte concentrations that fall between normal levels may give results at either level. Results will usually be within one level of the true concentration. The following list shows the generally detectable levels of the analytes in centrifred urine; however, because of the inherent variability of clinical urines, lesser concentrations may be detected under certain conditions.

TEST PAD AND SENSITIVITY (SPECIFICITY)
Urobilinogen: 2 EU/dL (Urobilinogen)

Glucose: 50-100mg/dl (Glucose)

Bilirubin: 1 mg/dl (Bilirubin)

Ketones: 5-15mg/dl (Acetoacetic acid)

Blood: 10 RBC/µl (0.03mg/dl, hemoglobin, Intact RBC)

Protein: 15-30mg/dl. (albumin)

Nitrile: 0.05mg/dl (Nitrite ion)

Leukocytes: 20-25 WBC/µl (Intact and lysed WBCs)

Ascorbic acid: 20mg/dl (Ascorbic acid)

BIBLIOGRAPHY
- NCCLS (National Committee for Clinical Laboratory Standard) GP 16-A/ ROUTINE URINALYSIS AND COLLECTION TRANSPORTATION AND PRESEVATION OF URINE SPECIMENS; TRINITATIVE GUIDELINE VOL 12-NO 26, EC.1992