Herpes Simplex Virus 1&2 IgG Elisa

KAPDHSVG
1. INTENDED USE
Enzyme ImmunoAssay (ELISA) for the quantitative/qualitative determination of IgG antibodies to Herpes Simplex Virus type 1 and 2 in human plasma and sera.
For “in vitro” diagnostic use only.

2. INTRODUCTION
Herpes Simplex Virus type 1 (HSV1) and type 2 (HSV2) are large complex DNA-containing viruses which have been shown to induce the synthesis of several proteins during infection, possessing an high number of crossreactive determinants and just a few of type-specific sequences.
The majority of primary and recurrent genital herpetic infections are caused by HSV2; while non genital infections, such as common cold sores, are caused primarily by HSV1.
The detection of virus specific IgG and IgM antibodies are important in the diagnosis of acute/primary virus infections or reactivations of a latent one, in the absence of evident clinical symptoms.
Asymptomatic infections may happen for HSV in apparently healthy individuals and during pregnancy. Severe herpetic infections may happen in immunocompromised and suppressed patients in which the disease may evolve toward critical pathologies.
The determination of HSV specific antibodies has then become important in the monitoring of “risk” patients and in the follow up of acute and severe infections.

3. PRINCIPLE OF THE TEST
Microplates are coated with native inactivated HSV1 and HSV2.
The solid phase is first treated with the diluted sample and IgG to HSV are captured, if present, by the antigens.
After washing out all the other components of the sample, in the 2nd incubation bound anti HSV IgG are detected by the addition of polyclonal specific anti IgG antibodies, labelled with peroxidase (HRP).
The enzyme captured on the solid phase, acting on the substrate/chromogen mixture, generates an optical signal that is proportional to the amount of anti HSV IgG antibodies present in the sample. A Calibration Curve, calibrated against an internal Gold Standard, makes possible a quantitative determination of the IgG antibody in the patient.

4. COMPONENTS
Each kit contains sufficient reagents to perform 96 tests.

Microplate
12 strips x 8 microwells coated with native UV inactivated HSV1 and HSV2 in presence of bovine proteins.
Plates are sealed into a bag with desiccant. Allow the microplate to reach room temperature before opening; reseal unused strips in the bag with desiccant and store at 2..8°C.

Calibrators
Ready to use and color coded standard curve derived from human plasma positive for HSV IgG ranging:
4ml CAL1 = 0 arbU/ml
4ml CAL2 = 5 arbU/ml
2ml CAL3 = 10 arbU/ml
2ml CAL4= 20 arbU/ml
2ml CAL5 = 50 arbU/ml
4ml CAL6 = 100 arbU/ml.
Standards are calibrated in arbitrary units against an internal Gold Standard (or IGS).
It contains human serum proteins, 2% casein, 10 mM Na-citrate buffer pH 6.0 +/−0.1, 0.1% Tween 20, 0.09% Na-azide and 0.1% Kathon GC as preservatives. Standards are blue colored.

Control Serum
1 vial. Lyophilized. It contains fetal bovine serum proteins, human IgG antibodies to HSV at about 20 arbU/ml ± 20%, 0.2 mg/ml gentamicine sulphate and 0.1% Kathon GC as preservatives.
Note: The volume necessary to dissolve the content of the vial may vary from lot to lot. Please use the right volume reported on the label.

Wash buffer concentrate
1x60ml/bottle20x concentrated solution. Once diluted, the wash solution contains 10 mM phosphate buffer pH 7.0 +/−0.2, 0.05% Tween 20 and 0.1% Kathon GC.

Enzyme Conjugate
2x8ml/vial. Ready to use and red colour coded. It contains Horseradish peroxidase conjugated polyclonal antibodies to human IgG, 5% BSA, 10 mM Tris buffer pH 6.8+/−0.1, 0.1% Kathon GC, 0.02% gentamicine sulphate as preservatives and 0.01% red alimentary dye.
Chromogen/Substrate

1x16ml/vial. It contains 50 mM citrate-phosphate buffer pH 3.5-3.8, 4% dimethylsulphoxide, 0.03% tetra-methyl-benzidine (or TMB) and 0.02% hydrogen peroxide (or H2O2) and 4% dimethylsulphoxide.

Note: To be stored protected from light as sensitive to strong illumination.

Sulphuric Acid

1x15ml/vial. It contains 0.3 M H2SO4 solution.

Attention!: Irritant (Xi R36/38; S22/26/30)

Specimen Diluent

2x50ml/vial. It contains 2% casein, 10 mM Na-citrater buffer pH 6.0 +/-0.1, 0.1% Tween 20, 0.09% Na-azide 0.1% and Kathon GC as preservatives. The reagent is blue colour coded.

2 Plate sealing foils

1 Package insert

5. MATERIALS REQUIRED BUT NOT PROVIDED

1. Calibrated Micropipettes (1000 µl, 100 µl and 10 µl) and disposable plastic tips.
2. EIA grade water (double distilled or deionised, charcoal treated to remove oxidizing chemicals used as disinfectants).
3. Timer with 60 minutes range or higher.
4. Absorbent paper tissues.
5. Calibrated ELISA microplate thermostatic incubator (dry or wet), set at +37°C (+/-0.5°C tolerance).-
6. Calibrated ELISA microwell reader with 450nm (reading) and with 620-630nm (blanking) filters.
7. Calibrated ELISA microplate washer.
8. Vortex or similar mixing tools.

6. WARNINGS AND PRECAUTIONS

1. The kit has to be used by skilled and properly trained technical personnel only, under the supervision of a medical doctor responsible of the laboratory.
2. All the personnel involved in performing the assay have to wear protective laboratory clothes, talc-free gloves and glasses. The use of any sharp (needles) or cutting (blades) devices should be avoided. All the personnel involved should be trained in biosafety procedures, as recommended by the Center for Disease Control, Atlanta, U.S. and reported in the National Institute of Health’s publication: “Biosafety in Microbiological and Biomedical Laboratories”, ed. 1984.
3. All the personnel involved in sample handling should be vaccinated for HBV and HAV, for which vaccines are available, safe and effective.
4. The laboratory environment should be controlled so as to avoid contaminants such as dust or air-born microbial agents, when opening kit vials and microplates and when performing the test. Protect the Chromogen (TMB) from strong light and avoid vibration of the bench surface where the test is undertaken.
5. Upon receipt, store the kit at 2-8°C into a temperature controlled refrigerator or cold room.
6. Do not interchange components between different lots of the kits. It is recommended that components between two kits of the same lot should not be interchanged.
7. Check that the reagents are clear and do not contain visible heavy particles or aggregates. If not, advise the laboratory supervisor to initiate the necessary procedures for kit replacement.
8. Avoid cross-contamination between serum/plasma samples by using disposable tips and changing them after each sample.
9. Avoid cross-contamination between kit reagents by using disposable tips and changing them between the use of each one.
10. Do not use the kit after the expiration date stated on the external container and internal (vials) labels. A study conducted on an opened kit did not pointed out any relevant loss of activity up to six 6 uses of the device and up to 3 months.
11. Treat all specimens as potentially infective. All human serum specimens should be handled at Biosafety Level 2, as recommended by the Center for Disease Control, Atlanta, U.S. in compliance with what reported in the Institutes of Health’s publication: “Biosafety in Microbiological and Biomedical Laboratories”, ed. 1984.
12. The use of disposable plastic-ware is recommended in the preparation of the liquid components or in transferring components into automated workstations, in order to avoid cross contamination.
13. Waste produced during the use of the kit has to be discarded in compliance with national directives and laws concerning laboratory waste of chemical and biological substances. In particular, liquid waste generated from the washing procedure, from residuals of controls and from samples has to be treated as potentially infective material and inactivated before waste. Suggested procedures of inactivation are treatment with a 10% final concentration of household bleach for 16-18 hrs or heat inactivation by autoclave at 121°C for 20 min.
14. Accidental spills from samples and operations have to be adsorbed with paper tissues soaked with household bleach and then with water.
15. The Sulphuric Acid is an irritant. In case of spills, wash the surface with plenty of water.
16. Other waste materials generated from the use of the kit (example: tips used for samples and controls, used microplates) should be handled as potentially infective and disposed according to national directives and laws concerning laboratory wastes.

7. SPECIMEN: PREPARATION AND RECOMMANDATIONS

1. Blood is drawn aseptically by venepuncture and plasma or serum is prepared using standard techniques of preparation of samples for clinical laboratory analysis. No influence has been observed in the preparation of the sample with citrate, EDTA and heparin.
2. Samples have to be clearly identified with codes or names in order to avoid misinterpretation of results. Bar code labeling and electronic reading is strongly recommended.
3. Haemolysed ("red") and visibly hyperlipemic ("milky") samples have to be discarded as they could generate false results. Samples containing residues of fibrin or heavy particles or microbial filaments and bodies should be discarded as they could give rise to false results.
4. Sera and plasma can be stored at +2°...8°C for up to five days after collection. For longer storage periods, samples can be stored frozen at –20°C for several months. Any frozen samples should not be frozen/thawed more than once as this may generate particles that could affect the test result.
5. If particles are present, centrifuge at 2.000 rpm for 20 min or filter using 0.2-0.8µ filters to clean up the sample for testing.
8. PREPARATION OF COMPONENTS AND WARNINGS

A study conducted on an opened kit has not pointed out any relevant loss of activity up to 6 re-uses of the device and up to 3 months.

Microplate:
Allow the microplate to reach room temperature (about 1 hr) before opening the container. Check that the desiccant has not turned dark green, indicating a defect in manufacturing.

In this case, call DIAsource ImmunoAssays customer service.

Unused strips have to be placed back into the aluminum pouch, with the desiccant supplied, firmly zipped and stored at +2°-8°C. After first opening, remaining strips are stable until the humidity indicator inside the desiccant bag turns from yellow to green.

Calibration Curve
Ready to use component. Mix carefully on vortex before use.

Control Serum
An aliquot of ELISA grade water, reported on the label, to the lyophilised powder; let fully dissolve and then gently mix on vortex.

Wash buffer concentrate
The whole content of the concentrated solution has to be diluted 20x with bidistilled water and mixed gently end-over-end before use. During preparation avoid foaming as the presence of bubbles could impact on the efficiency of the washing cycles.

Enzyme conjugate
Ready to use. Mix well on vortex before use. Be careful not to contaminate the liquid with oxidizing chemicals, air-driven dust or microbes.

If this component has to be transferred use only plastic, possibly sterile disposable containers.

Chromogen/Substrate
Ready to use. Mix well on vortex before use. Be careful not to contaminate the liquid with oxidizing chemicals, air-driven dust or microbes.

Do not expose to strong illumination, oxidizing agents and metallic surfaces.

If this component has to be transferred use only plastic, possible sterile disposable container

Sample Diluent
Ready to use component. Mix carefully on vortex before use.

Sulphuric Acid
Ready to use. Mix well on vortex before use.

DIAsource ImmunoAssays’s instructions
Warning: Cold, extreme cold, 21°C or more.

Catalogue nr: KAPDHSVSG

PI number: 1701363/en

Revision nr: 150218/1
10. PRE-ASSAY CONTROLS AND OPERATIONS
1. Check the expiration date of the kit printed on the external label (primary container). Do not use if expired.
2. Check that the liquid components are not contaminated by visible particles or aggregates.
3. Check that the Chromogen (TMB) is colourless or pale blue by aspirating a small volume of it with a sterile plastic pipette.
4. Check that no breakage occurred in transportation and no spillage of liquid is present inside the box (primary container). Check that the aluminium pouch, containing the microplate, is not punctured or damaged.
5. Dilute the content of the lyophilised Control Serum as reported in the proper section.
6. Dilute all the content of the 20x concentrated Wash Solution as described above.
7. Allow all the other components to reach room temperature (about 1 hr) and then mix gently on vortex all liquid reagents.
8. Set the ELISA incubator at +37°C and prepare the ELISA washer by priming with the diluted washing solution, according to the manufacturers instructions. Set the right number of washing cycles as found in the validation of the instrument for its use with the kit.
9. Check that the ELISA reader is turned on or ensure it will be turned on at least 20 minutes before reading.
10. If using an automated work station, turn on, check settings and be sure to use the right assay protocol.
11. Check that the micropipettes are set to the required volume.
12. Check that all the other equipment is available and ready to use.
13. In case of problems, do not proceed further with the test and advise the supervisor.

11. ASSAY PROCEDURE

The assay has to be carried out according to what reported below, taking care to maintain the same incubation time for all the samples in testing. The kit may be used for quantitative and qualitative determinations as well.

11.1. QUANTITATIVE DETERMINATION:

Automated assay:

In case the test is carried out automatically with an ELISA system, we suggest to make the instrument aspirate 1000 µl Sample Diluent and then 10 µl sample (1:101 dilution factor). The whole content is then dispensed into a properly defined dilution tube. Before the next sample is aspirated, needles have to be duly washed to avoid any cross-contamination among samples. When all the samples have been diluted make the instrument dispense 100 µl samples into the proper wells of the microplate.

This procedure may be carried out also in two steps of dilutions of 1:10 each (90 µl Sample Diluent + 10 µl sample) into a second dilution platform. Make then the instrument aspirate first 100 µl Sample Diluent, then 10 µl liquid from the first dilution in the platform and finally dispense the whole content in the proper well of the assay microplate.

Do not dilute Calibrators and the dissolved Control Serum as they are ready to use.

Dispense 100 µl calibrators/control in the appropriate calibration/control wells.

For the next operations follow the operative instructions reported below for the Manual Assay.

It is strongly recommended to check that the time lap between the dispensation of the first and the last sample will be calculated by the instrument and taken into consideration by delaying the first washing operation accordingly.

Manual assay:

1. Dilute samples 1:101 into a properly defined dilution tube (example: 1000 µl Sample Diluent and 10 µl sample). Do not dilute the Calibration Set as calibrators are ready to use. Mix carefully all the liquid components on vortex and then proceed as described below.
2. Place the required number of microwells in the microwell holder. Leave the A1 and B1 empty for the operation of blanking.
3. Dispense 100 µl of Calibrators and 100 µl Control Serum in duplicate. Then dispense 100 µl of diluted samples in each properly identified well.
4. Incubate the microplate for 60 min at +37°C.

Important note: Strips have to be sealed with the adhesive sealing foil, supplied, only when the test is carried out manually. Do not cover strips when using ELISA automatic instruments.

5. Wash the microplate with an automatic washer by delivering and aspirating 350 µl/well of diluted washing solution as reported previously (section 9.3).
6. Pipette 100 µl Enzyme Conjugate into each well, except A1+B1 blanking wells, and cover with the sealer. Check that this red coloured component has been dispensed in all the wells, except A1 and B1.

Important note: Be careful not to touch the plastic inner surface of the well with the tip filled with the Enzyme Conjugate. Contamination might occur.

7. Incubate the microplate for 60 min at +37°C.
8. Wash microwells as in step 5.
9. Pipette 100 µl Chromogen/Substrate mixture into each well, the blank wells A1 and B1 included. Then incubate the microplate at room temperature (18-24°C) for 20 minutes.

Important note: Do not expose to strong direct illumination. High background might be generated.

10. Pipette 100 µl Sulphuric Acid to stop the enzymatic reaction into all the wells using the same pipetting sequence as in step 9. Addition of acid will turn the positive calibrators, the control serum and the positive samples from blue to yellow.
11. Measure the colour intensity of the solution in each well, as described in section 9.5, at 450nm filter (reading) and at 620-630nm (background subtraction, strongly recommended), blanking the instrument on A1 or B1 or both.
11.2. QUALITATIVE DETERMINATION
If only a qualitative determination is required, proceed as described below:

Automated assay:
Proceed as described in section 11.1.

Manual assay:
1. Dilute samples 1:101 into a properly defined dilution tube (example: 1000 µl Sample Diluent + 10 µl sample). Do not dilute the Calibration Set as calibrators are ready to use. Mix carefully all the liquid components on vortex and then proceed as described below.
2. Place the required number of Microwells in the microwell holder. Leave A1 well empty for the operation of blanking.
3. Dispense 100 µl of Calibrator 0 arbU/ml and Calibrator 5 arbU/ml in duplicate and Calibrator 100 arbU/ml in single. Then dispense 100 µl of diluted samples in each properly identified well.
4. Incubate the microplate for 60 min at +37°C.
5. Important note: Strips have to be sealed with the adhesive sealing foil, supplied, only when the test is carried out manually. Do not cover strips when using ELISA automatic instruments.
6. Wash the microplate with an automatic washer by delivering and aspirating 350 µl/well of diluted washing solution as reported previously (section 9.3).
7. Pipette 100 µl Enzyme Conjugate into each well, except the A1 well, and cover with the sealer. Check that this red coloured component has been dispensed in all the wells, except A1.

Important note: Be careful not to touch the plastic inner surface of the well with the tip filled with the Enzyme Conjugate. Contamination might occur.
8. Incubate the microplate for 60 min at +37°C.
9. Wash microwells as in step 5.
10. Pipette 100 µl Chromogen/Substrate mixture into each well, the blank well included. Then incubate the microplate at room temperature (18-24°C) for 20 minutes.

Important note: Do not expose to strong direct illumination. High background might be generated.
11. Pipette 100 µl Sulphuric Acid into all the wells using the same pipetting sequence as in step 9. Addition of acid will turn the positive calibrators, the control serum and the positive samples from blue to yellow.
12. Measure the colour intensity of the solution in each well, as described in section 9.5, at 450nm filter (reading) and at 620-630nm (background subtraction, strongly recommended), blanking the instrument on A1.

General Important notes:
1. If the second filter is not available ensure that no finger prints are present on the bottom of the microwell before reading at 450nm. Finger prints could generate false positive results on reading.
2. Reading has to be carried out just after the addition of the Stop Solution and anyway not any longer than 20 minutes after its addition. Some self oxidation of the chromogen can occur leading to high background.

12. ASSAY SCHEME

<table>
<thead>
<tr>
<th>Method</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibrators & Control</td>
<td></td>
</tr>
<tr>
<td>Samples diluted 1:101</td>
<td>100 µl</td>
</tr>
<tr>
<td></td>
<td>100 µl</td>
</tr>
<tr>
<td>1st incubation</td>
<td>60 min</td>
</tr>
<tr>
<td>Temperature</td>
<td>+37°C</td>
</tr>
<tr>
<td>Wash step</td>
<td>4-5 cycles</td>
</tr>
<tr>
<td>Enzyme conjugate</td>
<td>100 µl</td>
</tr>
<tr>
<td>2nd incubation</td>
<td>60 min</td>
</tr>
<tr>
<td>Temperature</td>
<td>+37°C</td>
</tr>
<tr>
<td>Wash step</td>
<td>4-5 cycles</td>
</tr>
<tr>
<td>TMB/H2O2</td>
<td>100 µl</td>
</tr>
<tr>
<td>3rd incubation</td>
<td>20 min</td>
</tr>
<tr>
<td>Temperature</td>
<td>r.t.</td>
</tr>
<tr>
<td>Sulphuric Acid</td>
<td>100 µl</td>
</tr>
<tr>
<td>Reading OD</td>
<td>450nm</td>
</tr>
</tbody>
</table>
An example of dispensation scheme for Quantitative Analysis is reported below:

Microplate

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>BLK</td>
<td>CAL4</td>
<td>S 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>BLK</td>
<td>CAL4</td>
<td>S 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>CAL1</td>
<td>CAL5</td>
<td>S 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>CAL1</td>
<td>CAL5</td>
<td>S 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>CAL2</td>
<td>CAL6</td>
<td>S 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>CAL2</td>
<td>CAL6</td>
<td>S 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>CAL3</td>
<td>CS</td>
<td>S 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>CAL3</td>
<td>CS</td>
<td>S 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
BLK = Blank
CAL = Calibrator
CS = Control Serum
S = Sample

An example of dispensation scheme in qualitative assays is reported below:

Microplate

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>BLK</td>
<td>S 3</td>
<td>S 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>CAL1</td>
<td>S 4</td>
<td>S 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>CAL1</td>
<td>S 5</td>
<td>S 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>CAL2</td>
<td>S 6</td>
<td>S 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>CAL2</td>
<td>S 7</td>
<td>S 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>CAL6</td>
<td>S 8</td>
<td>S 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>S1</td>
<td>S 9</td>
<td>S 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>S2</td>
<td>S 10</td>
<td>S 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
BLK = Blank
CAL = Calibrators
S = Sample

13. INTERNAL QUALITY CONTROL
A validation check is carried out on the controls any time the kit is used in order to verify whether the performances of the assay are as qualified.

Control that the following data are matched:

<table>
<thead>
<tr>
<th>Check</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank well</td>
<td>< 0.050 OD450nm value</td>
</tr>
<tr>
<td>CAL 1 0 arbU/ml</td>
<td>< 0.150 mean OD450nm value after blanking coefficient of variation < 30%</td>
</tr>
<tr>
<td>CAL 2 5 arbU/ml</td>
<td>OD450nm > OD450nm CAL1 + 0.100</td>
</tr>
<tr>
<td>CAL 6 100 arbU/ml</td>
<td>OD450nm > 1.000</td>
</tr>
<tr>
<td>Control Serum</td>
<td>20 arbU/ml +/-20%</td>
</tr>
</tbody>
</table>

If the results of the test match the requirements stated above, proceed to the next section.
If they do not, do not proceed any further and operate as follows:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank well</td>
<td>1. that the Chromogen/Sustrate solution has not got contaminated during the assay</td>
</tr>
<tr>
<td>> 0.050 OD450nm</td>
<td>2. that the washing procedure and the washer settings are as validated in the pre qualification study;</td>
</tr>
<tr>
<td>CAL 1</td>
<td>3. that no mistake has been done in the assay procedure (dispensation of a positive calibrator instead of the negative one);</td>
</tr>
<tr>
<td>0 arbU/ml</td>
<td>4. that no contamination of the negative calibrator or of their wells has occurred due spills of positive samples or the enzyme conjugate</td>
</tr>
<tr>
<td>> 0.150 OD450nm after blanking coefficient of variation > 30%</td>
<td>5. that micropipettes haven’t got contaminated with positive samples or with the enzyme conjugate;</td>
</tr>
<tr>
<td></td>
<td>6. that the washer needles are not blocked or partially obstructed.</td>
</tr>
<tr>
<td>CAL 2</td>
<td>1. that the procedure has been correctly executed;</td>
</tr>
<tr>
<td>5 arbU/ml</td>
<td>2. that no mistake has been done in its distribution (ex.: dispensation of a wrong calibrator instead);</td>
</tr>
<tr>
<td>OD450nm < OD450nm CAL1 + 0.100</td>
<td>3. that the washing procedure and the washer settings are as validated in the pre qualification study;</td>
</tr>
<tr>
<td></td>
<td>4. that no external contamination of the calibrator has occurred.</td>
</tr>
<tr>
<td>CAL 6</td>
<td>1. that the procedure has been correctly executed;</td>
</tr>
<tr>
<td>100 arbU/ml</td>
<td>2. that no mistake has been done in its distribution (dispensation of a wrong calibrator instead);</td>
</tr>
<tr>
<td>< 1.000 OD450nm</td>
<td>3. that the washing procedure and the washer settings are as validated in the pre qualification study;</td>
</tr>
<tr>
<td></td>
<td>4. that no external contamination of the positive control has occurred.</td>
</tr>
<tr>
<td>Control Serum</td>
<td>1. that the procedure has been correctly executed;</td>
</tr>
<tr>
<td>Different from expected value</td>
<td>2. that no mistake has been done in its distribution (dispensation of a wrong calibrator instead);</td>
</tr>
<tr>
<td></td>
<td>3. that the washing procedure and the washer settings are as validated in the pre qualification study;</td>
</tr>
<tr>
<td></td>
<td>4. that no external contamination of the positive control has occurred.</td>
</tr>
</tbody>
</table>

Should one of these problems have happened, after checking, report to the supervisor for further actions.

14. RESULTS

14.1 Quantitative method

If the test turns out to be valid, use for the quantitative method an approved curve fitting program to draw the calibration curve from the values obtained by reading at 450nm (4-parameters interpolation is suggested).

Then on the calibration curve calculate the concentration of anti Herpes Simplex Virus IgG antibody in samples.

An example of calibration curve is reported on the next page.
Example of Calibration Curve:

![Calibration Curve Image]

Important Note:
Do not use the calibration curve above to make calculations.

14.2 Qualitative method
In the qualitative method, calculate the mean OD450nm values for the Calibrators 0 and 5 arbU/ml and then check that the assay is valid.

Example of calculation:

The following data must not be used instead or real figures obtained by the user.

Calibrator 0 arbU/ml: 0.020 – 0.024 OD450nm
Mean Value: 0.022 OD450nm
Lower than 0.150 – Accepted

Calibrator 5 arbU/ml: 0.350 – 0.370 OD450nm
Mean Value: 0.360 OD450nm
Higher than Cal 0 + 0.100 – Accepted

Calibrator 100 arbU/ml: 2.245 OD450nm
Higher than 1.000 – Accepted

15. INTERPRETATION OF RESULTS
Samples with a concentration lower than 5 arbU/ml are considered negative for anti HSV IgG antibody.
Samples with a concentration higher than 5 arbU/ml are considered positive for anti HSV IgG antibody.
Particular attention in the interpretation of results has to be used in the follow-up of pregnancy for a primary infection of HSV due to the risk of neonatal malformations.

Important notes:
1. Interpretation of results should be done under the supervision of the laboratory supervisor to reduce the risk of judgment errors and misinterpretations.
2. When test results are transmitted from the laboratory to another facility, attention must be paid to avoid erroneous data transfer.
3. In the follow-up of pregnancy for HSV infection a positive result (presence of lgG antibody > 5 arbU/ml) should be confirmed to ruled out the risk of a false positive result and a false definition of protection.
16. PERFORMANCES
1. Limit of detection
The limit of detection of the assay has been calculated by means of an internal Gold Standard in absence of an international preparation to refer to.
The limit of detection has been calculated as mean OD450nm Calibrator 0 arbU/ml + 5 SD.
The table below reports the mean OD450nm values of this standard when diluted in negative plasma and then examined in the assay for three lots.

Mean OD450nm values (n = 2)

<table>
<thead>
<tr>
<th>IgG arbU/ml</th>
<th>HSVG.PU Lot. 0203/2</th>
<th>HSVG Lot. 0403/M</th>
<th>HSVG.PU Lot. 0603</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.043</td>
<td>0.085</td>
<td>0.091</td>
</tr>
<tr>
<td>5</td>
<td>0.381</td>
<td>0.397</td>
<td>0.427</td>
</tr>
<tr>
<td>10</td>
<td>0.694</td>
<td>0.729</td>
<td>0.786</td>
</tr>
<tr>
<td>20</td>
<td>1.076</td>
<td>1.099</td>
<td>1.097</td>
</tr>
<tr>
<td>50</td>
<td>1.550</td>
<td>1.719</td>
<td>1.692</td>
</tr>
<tr>
<td>100</td>
<td>2.396</td>
<td>2.549</td>
<td>2.478</td>
</tr>
</tbody>
</table>

The assay shows a limit of detection far better than 5 arbU/ml.

In addition the preparation code Accurun n° 150, produced by Boston Biomedica Inc., BBI, USA, was tested in dilutions to determine the limit of its detection and provide a further value of analytical sensitivity

Mean OD450nm values (n = 2)

<table>
<thead>
<tr>
<th>Dilution</th>
<th>HSVG.PU Lot. 0203/2</th>
<th>HSVG Lot. 0403/M</th>
<th>HSVG.PU Lot. 0603</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 X</td>
<td>1.694</td>
<td>1.719</td>
<td>1.708</td>
</tr>
<tr>
<td>2 X</td>
<td>1.085</td>
<td>1.117</td>
<td>1.100</td>
</tr>
<tr>
<td>4 X</td>
<td>0.730</td>
<td>0.751</td>
<td>0.744</td>
</tr>
<tr>
<td>8 X</td>
<td>0.446</td>
<td>0.464</td>
<td>0.453</td>
</tr>
<tr>
<td>16 X</td>
<td>0.301</td>
<td>0.314</td>
<td>0.306</td>
</tr>
<tr>
<td>32 X</td>
<td>0.150</td>
<td>0.165</td>
<td>0.158</td>
</tr>
<tr>
<td>0 arbU/ml</td>
<td>0.043</td>
<td>0.085</td>
<td>0.066</td>
</tr>
<tr>
<td>5 arbU/ml</td>
<td>0.361</td>
<td>0.379</td>
<td>0.395</td>
</tr>
</tbody>
</table>

2. Diagnostic sensitivity:
The diagnostic sensitivity has been tested in a performance evaluation study on panels of samples classified positive by a kit US FDA approved. Positive samples from different stage of HSV infection were tested.
The value, obtained from the analysis of more than 300 specimens, has been > 98%.
In addition the Performance panel PTH 201, supplied by BBI, was evaluated with the kit against a reference FDA approved kit.
BBI Panel PTH 201 (Performance)

<table>
<thead>
<tr>
<th>Panel ID #</th>
<th>Dia. Pro OD450nm</th>
<th>Kit S/Co</th>
<th>REF HSV1 S/Co</th>
<th>REF HSV2 S/Co</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>1.064</td>
<td>2.7</td>
<td>3.5</td>
<td>1.6</td>
</tr>
<tr>
<td>02</td>
<td>2.525</td>
<td>6.4</td>
<td>2.9</td>
<td>4.4</td>
</tr>
<tr>
<td>03</td>
<td>0.860</td>
<td>2.1</td>
<td>1.0</td>
<td>1.1</td>
</tr>
<tr>
<td>04</td>
<td>2.391</td>
<td>6.0</td>
<td>4.4</td>
<td>4.1</td>
</tr>
<tr>
<td>05</td>
<td>1.793</td>
<td>4.5</td>
<td>4.0</td>
<td>2.2</td>
</tr>
<tr>
<td>06</td>
<td>1.093</td>
<td>2.8</td>
<td>0.8</td>
<td>1.4</td>
</tr>
<tr>
<td>07</td>
<td>0.801</td>
<td>2.0</td>
<td>0.9</td>
<td>1.2</td>
</tr>
<tr>
<td>08</td>
<td>2.180</td>
<td>5.5</td>
<td>2.9</td>
<td>3.9</td>
</tr>
<tr>
<td>09</td>
<td>2.086</td>
<td>5.3</td>
<td>4.6</td>
<td>3.4</td>
</tr>
<tr>
<td>10</td>
<td>0.029</td>
<td>0.1</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>11</td>
<td>1.900</td>
<td>4.8</td>
<td>3.8</td>
<td>2.7</td>
</tr>
<tr>
<td>12</td>
<td>0.995</td>
<td>2.5</td>
<td>2.1</td>
<td>2.3</td>
</tr>
<tr>
<td>13</td>
<td>1.833</td>
<td>4.6</td>
<td>2.4</td>
<td>3.3</td>
</tr>
<tr>
<td>14</td>
<td>0.153</td>
<td>0.4</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>15</td>
<td>2.130</td>
<td>5.4</td>
<td>4.7</td>
<td>3.6</td>
</tr>
<tr>
<td>16</td>
<td>1.320</td>
<td>3.3</td>
<td>1.9</td>
<td>2.7</td>
</tr>
<tr>
<td>17</td>
<td>3.008</td>
<td>7.6</td>
<td>4.6</td>
<td>5.6</td>
</tr>
<tr>
<td>18</td>
<td>1.042</td>
<td>2.6</td>
<td>2.8</td>
<td>1.6</td>
</tr>
<tr>
<td>19</td>
<td>0.097</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>20</td>
<td>0.414</td>
<td>1.0</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>21</td>
<td>1.682</td>
<td>4.2</td>
<td>3.3</td>
<td>2.2</td>
</tr>
<tr>
<td>22</td>
<td>2.364</td>
<td>6.0</td>
<td>5.1</td>
<td>4.1</td>
</tr>
<tr>
<td>23</td>
<td>1.926</td>
<td>4.9</td>
<td>4.3</td>
<td>2.2</td>
</tr>
<tr>
<td>24</td>
<td>1.556</td>
<td>4.0</td>
<td>1.6</td>
<td>2.5</td>
</tr>
<tr>
<td>25</td>
<td>2.572</td>
<td>6.0</td>
<td>5.1</td>
<td>3.7</td>
</tr>
</tbody>
</table>

Note: Cut-Off = 5 arbU/ml = 0.395

3. Diagnostic specificity:
The diagnostic specificity has been determined in the same study on panels of negative samples from not infected individuals, classified negative with a kit US FDA approved. Both plasma, derived with different standard techniques of preparation (citrate, EDTA and heparin), and sera have been used to determine the value of specificity. Frozen specimens have been tested, as well, to check for interferences due to collection and storage. No interference was observed. Potentially interfering samples derived from patients with different pathologies (mostly ANA, AMA and RF positive) and from pregnant women were tested. No crossreaction was observed. An overall value > 98% of specificity was found when examined on more than 100 specimens.

4. Precision:
It has been calculated on the Calibrator 5 arbU/ml, considered the cut-off of the assay, examined in 16 replicates in three separate runs for three lots. Results are reported as follows:

HSV: lot 0603/2

<table>
<thead>
<tr>
<th>Mean values</th>
<th>1st run</th>
<th>2nd run</th>
<th>3rd run</th>
<th>Average value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD 450nm</td>
<td>0.450</td>
<td>0.438</td>
<td>0.449</td>
<td>0.446</td>
</tr>
<tr>
<td>Std.Deviation</td>
<td>0.020</td>
<td>0.021</td>
<td>0.026</td>
<td>0.022</td>
</tr>
<tr>
<td>CV %</td>
<td>4.4</td>
<td>4.8</td>
<td>5.7</td>
<td>5.0</td>
</tr>
</tbody>
</table>

HSV.G: lot 0603

<table>
<thead>
<tr>
<th>Mean values</th>
<th>1st run</th>
<th>2nd run</th>
<th>3rd run</th>
<th>Average value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD 450nm</td>
<td>0.449</td>
<td>0.441</td>
<td>0.453</td>
<td>0.448</td>
</tr>
<tr>
<td>Std.Deviation</td>
<td>0.024</td>
<td>0.024</td>
<td>0.029</td>
<td>0.026</td>
</tr>
<tr>
<td>CV %</td>
<td>5.4</td>
<td>5.4</td>
<td>6.5</td>
<td>5.8</td>
</tr>
</tbody>
</table>

HSV: Lot 0403/M

<table>
<thead>
<tr>
<th>Mean values</th>
<th>1st run</th>
<th>2nd run</th>
<th>3rd run</th>
<th>Average value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD 450nm</td>
<td>0.405</td>
<td>0.406</td>
<td>0.405</td>
<td>0.405</td>
</tr>
<tr>
<td>Std.Deviation</td>
<td>0.027</td>
<td>0.031</td>
<td>0.030</td>
<td>0.029</td>
</tr>
<tr>
<td>CV %</td>
<td>6.6</td>
<td>7.6</td>
<td>7.4</td>
<td>7.2</td>
</tr>
</tbody>
</table>

The variability shown in the tables above did not result in sample misclassification.

5. Accuracy:
The assay accuracy has been checked by the dilution and recovery tests. Any "hook effect", underestimation likely to happen at high doses of analyte, was ruled out up to 500 IU/ml.
17. LIMITATIONS OF THE PROCEDURE

Bacterial contamination or heat inactivation of the specimen may affect the absorbance values of the samples with consequent alteration of the level of the analyte.

Frozen samples containing fibrin particles or aggregates after thawing may generate some false results.

This test is suitable only for testing single samples and not pooled ones.

Diagnosis of an infectious disease should not be established on the basis of a single test result. The patient’s clinical history, symptomatology, as well as other diagnostic data should be considered.

REFERENCES

Revision date: 2015-02-18
Used symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>°F</td>
<td>Degree Fahrenheit</td>
</tr>
</tbody>
</table>

Used in vitro diagnostic medical device

- **In vitro diagnostic medical device**
- Manufacturer
- Batch code
- Control code
- Catalogue number
- Use by
- Storage temperature
- Wash solution concentrated
- Acetonitrile
- Serum
- Dilution buffer
- Specimen diluent
- Immunoadsorbent
- Bond Elut Silica cartridges
- Reconstitution solution
- Polyehtylene glycol
- Extraction solution
- Euation solution
- Pre-treatment solution
- Neutralization solution
- Tracer buffer
- Microplate
- HRP Conjugate
- HRP Conjugate concentrate
- Conjugate buffer
- Chromogenic TMB concentrate
- Chromogenic TMB solution
- Substrate buffer
- Stop solution
- Incubation serum
- Buffer
- AP Conjugate
- Substrate PNPP
- Biotin conjugate concentrate
- Precipitating Agent
- Avidine HRP concentrate
- Assay buffer
- Biotin conjugate
- Specific Antibody
- Streptavidin HRP concentrate
- Non-specific binding
- 2nd Antibody
- Acidification Buffer
- Incubation trays
- PMSF solution
- Protect from light
- Dot Strip
- Extraction Buffer Concentrate
- Cartridge
- Streptavidin HRP
- Pipette
- Wash buffer